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Abstract. We present numerical results for the photoelectron spectrum in double ionization by keV photons
in the quasiequal-energy sharing region. In this region of the spectrum, the relevant ionizing mechanism is
due to a mutual sharing of the photon momentum by both electrons, with small momentum transferred to
the atomic nucleus. Calculations were performed for photon energies of 25 and 50 keV, where retardation
effects are fundamental, while final-state correlations are of minor importance. The spectra present a
two-peak structure, with maxima located at the photoelectron energies €1 = w/2 £+ \/w3/8¢2, with w the
photon energy in atomic units. We discuss the general features of the spectrum in terms of the picture of the
photoionization of two free electrons, and we propose a way of detecting the contribution by experiments.

PACS. 32.80.Fb Photoionization of atoms and ions — 33.60.-q Photoelectron spectra

1 Introduction

In recent years there has been an active interest towards
understanding processes of interaction of keV photons
with atomic targets. Much of this interest has been gen-
erated by experiments conducted on modern synchrotron
radiation sources (for a review, see e.g. Ref. [1]). Among
the most recent experiments of this type we may cite:

(i) the measurement of the Compton ratio of double-to-
single ionization of He in the photon-energy range
40-100 keV [2];

(ii) measurements of differential X-ray scattering cross-
sections in Ne and He in the range 11-22 keV [3];

(iii) the double K-vacancy production in Mo by 50 keV

photons [4].

These are only examples of the present state-of-the-
art in the technology of synchrotron sources used for the
investigation of atomic samples interacting with X-ray ra-
diation.

In particular, the experiment of Spielberger et al. [2]
is of interest here, since we will consider double ioniza-
tion of He by keV photons. Nevertheless, our concern
in this paper is on the photoabsorption process rather
than on the Compton scattering process. It is well es-
tablished that at sufficiently high photon energies the
Compton process dominates over photoabsorption both
for single and double ionization. The energy at which
the cross-sections of both processes are approximately
equal is about 6.3 keV [5]. Therefore, in the experiment
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of reference [2] ion-yield measurements (both He™ and
He?t) are signatures of Compton scattering ioniza-
tion, not photoabsorption. It is worth noting that the
experiment of reference [2] was performed using the
COLTRIMS technique (cold target recoil ion momentum
spectroscopy [6]), in which the momentum distribution of
recoiling nucleus is measured. Compton ions are left with
small momentum (p,, ~ 0), and a plot of the momentum
distribution of the recoiling nucleus in a plane perpendicu-
lar to the photon beam shows a large concentration around
the very center. If a ring at a distance p, ~ v2w from the
center had been observed as well, photoabsorption ions
would have been recorded, since the photoabsorption pro-
cess imparts large momentum to the ion [6]. There exists
another photoabsorption mechanism leading to small mo-
mentum transferred to the nucleus (p,, ~ 0). This mecha-
nism, in which we are concerned in the present work, re-
sults in the quasiequal-energy sharing by both electrons,
which are ejected in nearly opposite directions.

In a recent paper [7], we have provided an estimate
of the contribution of quasiequal-energy electrons on the
total cross-section for double photoionization. We have
shown that, for high energies, the main contribution to
the cross-section comes from a non-dipole term called the
quasifree contribution [8,9]. The name for this contribu-
tion comes from the fact that, for high-energy photons,
the two ejected electrons can be treated as quasifree [8].
Since in our case the electrons are indeed bounded to the
nucleus, all departures from a quasifree picture are due
to the momentum distribution of the electron pair in the
atom before the interaction. In reference [7] we also showed
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that there exists another contribution to the cross-section
with dipole-like character, which decreases sufficiently fast
as the photon energy increases. At 100 keV all the contri-
bution is mainly non-dipole, and adds about 17% to the
photoabsorption cross-section that comes from the asym-
metric energy sharing (i.e. the shake-off process [10]).

The aim of this paper is to present numerical results
for the spectrum in the quasiequal-energy sharing region.
In particular, we show that the spectrum presents a two-
peak structure, indicating that the electrons are mainly
ejected with lightly different energies. Our results agree
with the picture obtained from that of two free electrons,
in that the structure of the spectrum could be analyzed
in terms of energy and momentum conservation of two
free electrons [9]. We explicitly show that the two-peak
structure of the spectrum could not be accounted for in
dipole approximation. The use of ground-state wave func-
tions not having a cusp at the e—e relative coordinate
can not account for quasiequal-energy ejection, since the
process can take place when the electrons are close to
each other. Atomic units are used throughout except as
otherwise stated.

2 Formulation

We consider the absorption of a high-energy photon of
energy w leading to ionization of two electrons. The
transition matrix for this process reads

T= <w;|ﬁrm|w1>a (1)
where i(ri,re) and ; (ki,kso|ry,rp) are the initial
(bound) and final (double-continuum) helium wave func-

tions, respectively. Here k; and ks are used to denote the
electron momenta. The radiation-matter operator reads

(2)

where r; and rp are the coordinates of the electrons
with respect to the heavy nucleus of charge Z = 2, & is
the polarization unit vector, k is the photon momentum
(é-k=0), k=w/c, and c is the speed of light.

In this work we consider the particular case of
quasiequal-energy electrons, which are mainly ejected in
opposite directions. Since the photon energy is very high,
quasiequal-energy electrons are ejected each with high en-
ergy, and final-state correlations should be of minor im-
portance. Therefore, these fast electrons will be described
by using a plane-wave representation

H,, =exp(ik-ri)é-Vy, +exp(ik-ra)é- Vy,,

[1 4+ P12]

1/’f7(1<171<2|1'171'2) = W

exp (iky - r1 + iks - ro),
(3)

where Py is the exchange operator. Equation (3) should
be valid for k; ~ ko ~ \/w > Z, i.e. where the Coulomb
interactions are expected to give a small contribution.

The transition matrix, using the plane-wave represen-
tation, can be expressed in the form

T =iv2 {é Ky i(ky — K, ko) + @ - kot (i, ko — k)} :
(4)

where 1/71 is the double-Fourier-transform given by

~ dr;d
vi(p1,P2) = //% exp (—ip1 -1 —ip2 - T2)
X 1/)1(1‘1,1‘2). (5)

Once we have written down the amplitude (Eq. (4)), the
process is then described by the basic observable referred
to as the five-fold differential cross-section (5DCS)

dda2t 472
T pko|TP2
de,d,d2y  we t 2T

(6)
In the last equation €; is the energy of the electron de-
tected within the angular range given by df2;, while the
energy of the second electron is fixed by energy conser-
vation €; + €2 = w + €y, with €y the ground-state energy.
The second electron is detected within the angular range
df2;. Since we are in a high-energy case w > —¢g, the
total-available energy w + €9 ~ w.

To calculate the transition matrix (Eq. (4)) we need to
specify the initial-state wave function, which is considered
to be of the form

Yi(r1,12) = Nitpo(r1,T2) — N1dyo(r1,r2)e ", (7)
with ¥g(r1,re) = e~ 1Az 4 e=Bri—arz and r = ry — ry.
We have optimized the parameters of this wave function
by minimizing the bound-state energy (), and imposing
that 6v/(1 — ) = 1/2. This condition is required to sat-
isfy the Kato cusp condition [11] at the coalescence point

r = 0, namely
ok T
( 8T )TZO - 21/}1(7” - 0)'

Equation (8) is referred to as the 2nd Kato cusp condition,
the 1st Kato condition being that at the electron-nucleus
(e—n) coordinate,

(8)

O B o .
<3Tj)szozwl(T] *O)a .7*]-;2' (9)

The values of the calculated parameters are: Ny = 1.2959,
a = 1.4037, 8 = 2.2069, v = 0.4504, and 6 = 0.5261.
With these parameters, our wave function accounts for
94.4% of the correlation energy. If instead of requiring the
fulfillment of equation (8), we had determined the param-
eters by minimizing the energy ¢y and allowing the coeffi-
cients to vary freely, the wave function so obtained would
account for 96% of the correlation energy, while the 2nd
Kato cusp condition (Eq. (8)) would be 0.74 instead of 0.5.
However, we should remark that the 2nd Kato condition
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is the most sensitive magnitude to be fulfilled by the wave
function for the process here studied, since quasiequal-
energy electrons are ejected when they are close to each
other before the interaction. As we will see in Section 4,
if we attempt to calculate quasiequal-energy ejection by
using a wave function without a cusp at » = 0, no enhance-
ment of the cross-section will be observed. The Kato cusp
condition at the electron-nucleus coordinate is not of im-
portance here; it must be considered when the electrons
are ejected with highly asymmetric energy sharing, i.e.
the shake-off process.

3 Numerical computations

In this section we describe the method used for the numer-
ical calculation of the spectrum. For that, we need to cal-
culate the transition matrix (Eq. (4)) with the initial state
(Eq. (7)) in the momentum space. Using equation (5), we
write equation (7) in Fourier space

Ui(p1, p2) = N1vo(p1, p2)
_Nl(s/ 72 (72 Jsz) 1;( 1 - K,p2 +K), (10)
where
Yo(p1,p2) = (1+7712)8 a b (11)

(0% +pi)? (8% + p3)?

We have performed a full numerical calculation us-
ing the exact solution of the integral appearing in
equation (10). In reference [7] the evaluation of the contri-
bution of quasiequal-energy electrons was done using the
peaking approximation for the Fourier transform of the
initial state, which is valid for p; ~ —p2, and py,ps > Z.
We undertake here the exact calculation. To that end,
we have considered the Lewis-type three denominator
integral

(12)

3
1
Tnins, :/dx -,
ni1,n2,n3 j];[l [a?+(x_sj)2]7LJ

with s; = pi1, s = —p2, and s3 = 0. The integral in
equation (10) is given by J2 2,2, which is related to Ji.11
through the following parametric derivation

1oy 1
«72,2,2:_—31_[(1— 3111 (13)

Therefore, we were able to evaluate analytically the ma-
trix element (Egs. (4, 10)) since Ji,11 is known in closed
form [12]:

2
Jii1 = %ln [gi—g} (14)

with
0=V T, (15)
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Fig. 1. The 5DCS calculated at the photon energy w = 25 keV,
and for equal-energy sharing (e1 = €2). The geometry was cho-
sen such that k = kz and € = %x. The calculations were done
for o1 = @2 = 0°, i.e. in the plane defined by k and é. Results
are shown at various angles for the ejection of the first electron
(electron 1), and we only plot the cross-section near the values
02 ~ 01 + 180°, since for values away from back-to-back emis-
sion the cross-section drops abruptly. The solid lines are the
calculations including full retardation, while the dashed lines
are the results within dipole approximation.

T =[(p1+p2)* + (a1 + a2)’][p + (a1 + as)’]

x [p3 + (a2 +a3)?], (16)
and
S =[(p1+p2)* + (a1 + a2)?]as + [P + ai + a3]az

+ [p3 + a3 +adla;. (17)

The derivatives are tedious to perform, but at the end
J2,2,2 can be obtained in (large) closed form.

Once the matrix element has been calculated, the pho-
toelectron spectrum was obtained integrating over the
four angular coordinates ({21, {22) in equation (6) using
a Monte-Carlo algorithm. The relative error for the inte-
gration was set in 8%. It was not possible to obtain con-
verged results with a relative error less than this value,
since the integrand peaks strongly within a very narrow
region in momentum space. We should note that the nu-
merical results presented in the next section agree, within
the numerical accuracy, with those obtained through the
use of the peaking approximation [7].

To show the sharp integrand peaks, we plot in Figure 1
the 5DCS at 25 keV for the case of equal-energy sharing
(€1 = €2), in the plane defined by k and é. The plot shows
the cross-section at different angles for the observation
of the first electron (electron 1). The main contribution
comes from a small range of angles for the second electron
02, typically within a range of 30 degrees. We only plot the
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cross-section within this range, since for other angles 65
the cross-section decreases abruptly. There are other fea-
tures of interest in the results of Figure 1. Within dipole
approximation (dashed line) the cross-section is zero at
0> = 61 + 180°. This comes from a selection rule valid
within dipole approximation, i.e. T'(k = 0,ky,—ky) = 0.
Although we have used here a plane-wave final state, this
selection rule is general and valid for exact wave func-
tions [13]. In the general case (solid line), a zero in the
cross-section appears when k; is in the direction of &
or k and k; = —k,. Although the cross-section cuts
abruptly in this case, peaks strongly and even surpass
in magnitude the dipole-case results. It is of interest to
note that the peak-structure of the cross-section, which
is concentrated around the configuration k; ~ —ks, is
a direct manifestation of ground-state correlation, here
embedded into the 2nd Kato cusp condition.

4 Results and discussion

In this section, we present and discuss our results for the
photoelectron spectrum in the quasiequal-energy sharing
region. To begin with, we should mention a couple of
points about the physics of the process. For high-energy
photon impact, ejection of two electrons with similar en-
ergies is allowed when these electrons are close to each
other. Further, if the electrons are somewhat away from
the nucleus, we may treat them as been quasifree [8], pro-
vided that the photon energy is very high, w > —eg. Let
we think for a moment in two free electrons interacting
with a high-energy photon. The photon momentum is as-
sumed to be in the z-direction. After the interaction, en-
ergy (€1 + €2 = w) and momentum (k; + ko = k) conser-
vation mandate that the electron energies must be given,
with very good accuracy, by

3/2
€1 — g:l:w
2 2c

costy, (18)
and e = w—e;. Electrons should have equal energies when
ejected at right angles with the photon beam, while the
maximum asymmetry in energy sharing should take place
when ejected in the same direction of the photon beam.
From the preceding equation, we obtain that the electron
energies should be in the range [9]

W32

le1 —e2f < (19)

c
The picture of two free electrons is not exactly applied to
our present problem, since the electrons are bounded to
the nucleus through the Coulomb potential and are inter-
acting with each other. Nevertheless, this simple picture
will help us to explain some features of the photoelec-
tron spectrum here presented. We should note that the
equations for energy and momentum conservation given
above are still valid in our case provided we assume that
the momentum transferred to the nucleus is very small,
i.e. k> p, with p, the momentum transferred to the
nucleus.

10°

0.30 0.40 0.50

glw

Fig. 2. Photoelectron energy spectrum in the quasiequal-
energy region for the photon energy w = 25 keV. The final
state is described by a plane-wave representation (Eq. (3)),
while the initial state is given by equation (7) with coeffi-
cients determined to satisfy the 2nd Kato cusp condition (see
text). Solid line labeled R: full calculation including retarda-
tion. Dashed line labeled D: calculation within dipole approx-
imation. Solid line labeled R’: full calculation including retar-
dation with initial state with 6 = 0. Dashed line labeled D':
calculation within dipole approximation with initial state with
0 = 0. The calculations with 6 = 0 were done with coefficients
recalculated so the wave function to be normalized; these cal-
culations give no trace of quasiequal-energy sharing, since the
wave function in this case has no cusp at » = 0. The vertical
dashed lines mark the range of energies allowed for two-free
electrons (Eq. (19)), while the vertical arrows are the maxima
determined from equation (20).

In Figure 2 we present the spectrum in the quasiequal-
energy region at the photon energy of 25 keV, calculated
numerically as explained in Section 3. The vertical dashed
lines mark the maximum range of energies allowed for
two free electrons, as given by equation (19). Our spec-
tra extend out of these limits, since these are physical
limits valid only in the idealized case of two free elec-
trons, or conversely in the limit of infinite photon energy.
The solid line in Figure 2 labeled R is our final result
for the spectrum. It presents a two-peak structure and a
dip at the very center. We will discuss first this curve,
and afterwards we will make the presentation and analy-
sis of the other three curves in that figure. Note first that
the main contribution to the spectrum is well within the
limits imposed by the two-free electron case. Out of these
limits the cross-section falls abruptly, and makes almost
not relevant contribution to the total yield. The two peaks
in the spectrum could be accounted for in the following
manner. At this photon energy, two-electron ejection with
quasiequal energies is mainly a non-dipolar process, also
referred to as quasifree [8]. The quasifree contribution,
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which is of quadrupole character, has the angular depen-
dence sin®0,cos20, on the angle 6, = cos™!(q - k) (see
Eq. (11) of Ref. [7]). Here q denotes the relative momen-
tum of the electrons, q = (k; — k2)/2. The maximum
probability for the ejection of the electron pair is there-
fore at 45 degrees with respect to the direction of the pho-
ton momentum. Using this result into equation (18), we
conclude that the electrons should be ejected with higher
probabilities with energies

w w3
a=3%\V3a (20)
This explains quite well the positions of the two peaks ob-
served in our results (curve labeled R) in Figure 2. The
values given by equation (20) are marked in Figure 2 as
the vertical arrows. Although the mechanism leading to
the ejection of two fast electrons, when considering re-
tardation, produces a pair of quasiequal-energy electrons,
the maximum probability is for the ejection of the electron
pair in a lightly asymmetric form, the difference in energy
sharing being roughly 4 keV for the initial photon energy
of 25 keV.

We discuss now the other three curves presented in
Figure 2. The curve labeled D in that figure is the re-
sult of using the dipole approximation. Note that it is of
smaller magnitude, and that there is only one peak at
the very center. The smaller magnitude is due to the fact
that the quasifree contribution, being of non-dipole char-
acter, is absent. The quasifree contribution dominates the
ejection of electrons of similar energies for high-photon
energies, and this contribution could only be accounted
for in a calculation that goes beyond dipole approxima-
tion. The other feature of the spectrum, of having only
one peak at the very center, is also a fact of neglecting the
photon momentum within the dipole calculation. We have
made above an analysis in terms of energy and momentum
conservation for two free electrons. If in that analysis we
would consider k = 0, we obtain that the electrons should
be ejected with exactly equal energies and in opposite di-
rections. This explains the maximum observed in Figure 2
at €1 = w/2 for the curve labeled D.

Finally, we present in Figure 2 two other curves labeled
R’ and D/, which correspond to calculations including re-
tardation (R’) and in dipole approximation (D). These
curves were obtained by setting 6 = 0 in equation (7).
In this case there is no increase or structure in the cross-
section in the central region in none of both calculations.
This is due to the fact that, when setting 6 = 0, the initial
state does not have a cusp at the coalescence point r = 0.
The initial-state wave function does not account for the
e—e interaction, and the ejection of electrons with simi-
lar energies could not be taken into account when using
this initial-state. It could be further easily proved that, if
we write the initial state as ¢;(r1,r2) = ¢o(r1)do(r2), the
Fourier-transform (Eq. (5)) of that state behaves asymp-
totically as 1/?1 o ¢~8, when the relative momentum of the
electrons ¢ — oo. This corresponds to the first term on
the right-hand side of equation (10). To obtain the con-
tribution from quasiequal-energy sharing the initial state
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Fig. 3. As Figure 2, but for the photon energy w = 50 keV.

employed should have the proper behavior ¢; oc ¢=* [7],
as is the case for the initial state of equation (10) due to
the second term on the right-hand side.

In Figure 3 we present the photoelectron spectrum at
a higher photon energy w = 50 keV. The various anal-
ysis we have made at 25 keV are also valid here. Some
few comments are only necessary. At 50 keV the differ-
ence in magnitude between the curves R and D is more
pronounced, since as was already shown, the total yield
for curve R falls off as w=5/2, while for curve D falls off as
w™92 [7]. The peak maxima in curve R are now at differ-
ent energies than in the previous case (Fig. 2), which are
again well accounted for by equation (20). The two peaks
are now more away from the midpoint. As the photon en-
ergy increases, the two peaks of the spectrum predicted by
equation (20) move towards the shake-off regions placed
at €1 ~ 0 and €; ~ w. The limits ¢; ~ 0 and ¢; ~ w in
equation (20) occur when w ~ 2¢® ~ 1 MeV. At these
impact energies, however, the non-relativistic formalism
employed here looses significance. We should stress that
our results are valid for non-relativistic energies (w < c?).
It is of interest to note, that similar characteristics in the
shape of the spectrum (curve labeled R) were found in [8,9]
by using other approaches. Those calculations, performed
at different photon energies than the ones here addressed,
will be compared with results using our method in a future
work.

We have presented calculations of the spectrum within
the energy range 0.3 < e1/w < 0.7, which is the relevant
region for the ejection of quasiequal-energy electrons for
the photon energies here considered. However, we have
not presented those curves in the shake-off regions (i.e.
€1 ~ 0 and €; ~ w). The reason is that the final-state used
here is adequate for describing two fast electrons moving
in opposite directions, but is not adequate to represent
the physical situation of shake-off, in which the energy
asymmetry between the electrons is almost complete. Our
results for the four different calculations in Figures 2 and 3
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give nearly equal results in the shake-off region, the differ-
ence being of order 2w/c? between R and D curves for the
same initial state. However, the magnitude of the spec-
tra in the shake-off region is not correctly predicted when
using the plane-wave final state.

The ejection of quasiequal-energy electrons is a pecu-
liar effect of the electron-electron interaction, but this ef-
fect has not been observed experimentally yet. It is then
necessary to inquire if the predictions we have done here
could confront an experimental verification. As was al-
ready pointed out [7], observation of recoil ions carrying
small momentum (p,, ~ 0) produced by quasiequal-energy
sharing is not feasible. The reason is that ions with small
momentum are mainly produced by the Compton scatter-
ing process, about 4 orders of magnitude larger [14]. The
only possibility then rests in the observation of the fast
electrons produced by quasiequal-energy sharing. To be
more specific, let us consider a photon beam of 50 keV.
In this case, electrons ejected by single-photoionization
should have energies close to 50 keV, as well as the fast
electron produced in double ionization by the shake-off
mechanism. The main contribution to Compton ioniza-
tion comes for energies transferred less than the binary
encounter energy AE ~ 2w?/c?, which for 50 keV primary
photons is about AE ~ 10 keV. The Compton process
produces electrons, with higher probability, with energies
lower than 10 keV. The probability of producing electrons
of energies larger than 10 keV by the Compton process
is highly reduced, since the cross-section drops abruptly
for energies transferred above the binary encounter en-
ergy [15,16]. From equation (20), electrons produced by
quasiequal-energy sharing will be mainly ejected with
energies close to 19.5 keV and 30.5 keV. Compton ioniza-
tion could not account for the production of these high-
energy electrons. Therefore, observation of these fast elec-
trons should be an unmistakable signature of the process
studied in the present work. Further, such a measurement
would not require to be done in coincidence, since there
is no other competitive process to account for the pro-
duction of these fast electrons. In summary, detection of
fast electrons with energies close to those predicted by
equation (20), most likely at 45 degrees with respect to
the direction of the photon beam, should be the most fa-
vorable situation for the observation of electrons produced
by quasiequal-energy sharing process.

To end this section, we wish to make a few comments
on results that we published in previous works [17,18]. In
reference [17] we reported calculations showing a bump in
the photoelectron spectrum at the center of the energy
distribution. Those calculations were performed within
dipole approximation for w = 2 keV and 3 keV. The
calculations presented here in Figures 2 and 3 at higher
photon energies also show this kind of structure within
dipole approximation. The difference between the present
calculations and those in reference [17] rests in that we
have used here plane-waves for the final state, while in
reference [17] a correlated final state was employed. How-
ever, it is not expected that uncorrelated final states
give a good account for the magnitude of the spectrum

in the central region at low photon energies (between 2
and 10 keV). Use of planes waves is justified for high en-
ergies, where the process can be considered to be truly im-
pulsive. At lower photon energies, in the range 2-10 keV,
it is necessary to consider effects coming from final-state
interaction. At those low energies retardation effects are
small, while final-state correlations are more important.
The approximations used in the present work, valid for
substantially higher energies, are in fact on the opposite
side: retardation effects are the most relevant, while final-
state correlations are of little importance. Other calcu-
lations, using highly-correlated configuration-interaction-
type (Cl-type) wave functions, presented in reference [17]
at 3 keV, and at a higher photon energy (w = 12 keV) in
reference [18], failed to describe any enhancement or struc-
ture in the central region of the spectrum. The reason is
that the Cl-type wave function used in those works does
not account adequately for the e—e interaction when the
electrons are close to each other, while describes very well
the energy eigenvalue and the e—n interaction through the
1st Kato cusp condition (Eq. (9)).

5 Summary and conclusions

In this work we have studied the photoelectron spec-
trum in two-electron ionization by keV photons in the
quasiequal-energy sharing region. This region of the spec-
trum is characteristically different from the shake-off re-
gion, in which the electrons share the energy in a highly
asymmetric form. The physical mechanisms for ionization
in these two regions of the spectrum are also different.
In the shake-off region the slow electron is promoted into
the continuum by loss of screening, sometimes also re-
ferred to as the projection of the wave function. In the
quasiequal-energy region, the process takes place by the
mutual sharing of the photon momentum by both elec-
trons, which are ejected at almost back-to-back angles [8].
In this process almost no net momentum is transferred to
the atomic nucleus [9].

We have shown that, in the central region of the spec-
trum, the energy distribution is determined by a lightly
asymmetric energy sharing. However, each electron car-
ries a substantial amount of the total energy. This sce-
nario is well accounted for by the picture of two free elec-
trons, since in the process studied here the momentum
transferred to the nucleus is of minor importance. Our re-
sults were obtained numerically, and the integrated spec-
tra agree quite well with analytic results presented previ-
ously [7]. Finally, we have proposed a way for measuring
the contribution coming from quasiequal-energy sharing.
The analysis was done for helium, but a similar situation
is expected to be found in other atoms. In particular, a
comparative study for two-electron systems will be pre-
sented elsewhere [19].
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